Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.551
Filtrar
1.
Res Vet Sci ; 171: 105235, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554609

RESUMO

As ectoparasites and efficient vectors of pathogens fleas constitute a source of nuisance for animals as well as a major issue for public health in Algeria. In this study, a molecular survey has been conducted to investigate the presence of pathogens in fleas infesting domestic and wild carnivores in the central north and eastern north and south of Algeria. The molecular screening that targeted Acanthocheilonema reconditum, Bartonella spp.,and Dipylidium caninum, was supplemented by a comprehensive analysis of risk factors related to flea-borne pathogens, drawing data from all documentation across multiple languages and sources from Morocco, Algeria, and Tunisia. In the current study, several Bartonella spp. 56/430 (13.02%) and Dipylidium caninum 3/430 (0.7%) were identified. The sequencing results revealed 5/23 (21.74%) B. clarridgeiae, 3/23 (13.04%) B. henselae, and 3/23 (13.04%) B. vinsonii. The two haplotypes, H1 and H2, of D. caninum were identified for the first time in North Africa. The results of the Artificial Neural Network risk analyses unveiled that the prevalence of pathogens and the presence of host generalist fleas as well as the vectorial competence are the most determinant risk factors of flea-borne diseases in Maghreb.


Assuntos
Bartonella , Infestações por Pulgas , Sifonápteros , Animais , Argélia/epidemiologia , Infestações por Pulgas/epidemiologia , Infestações por Pulgas/veterinária , Infestações por Pulgas/parasitologia , Bartonella/genética , Medição de Risco
2.
Microbiol Spectr ; 12(4): e0165323, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38483477

RESUMO

Vector-borne infections may underlie some rheumatic diseases, particularly in people with joint effusions. This study aimed to compare serum and synovial fluid antibodies to B. burgdorferi and Bartonella spp. in patients with rheumatic diseases. This observational, cross-sectional study examined paired synovial fluid and serum specimens collected from 110 patients with joint effusion between October 2017 and January 2022. Testing for antibodies to B. burgdorferi (using CDC criteria) and Bartonella spp. via two indirect fluorescent antibody (IFA) assays was performed as part of routine patient care at the Institute for Specialized Medicine (San Diego, CA, USA). There were 30 participants (27%) with positive two-tier B. burgdorferi serology and 26 participants (24%) with IFA seroreactivity (≥1:256) to B. henselae and/or B. quintana. Both B. burgdorferi IgM and IgG were detected more frequently in synovial fluid than serum: 27% of patients were either IgM or IgG positive in synovial fluid, compared to 15.5% in serum (P = 0.048). Conversely, B. henselae and B. quintana antibodies were detected more frequently in serum than synovial fluid; overall only 2% of patients had positive IFA titers in synovial fluid, compared to 24% who had positive IFA titers in serum (P < 0.001). There were no significant associations between B. burgdorferi or Bartonella spp. seroreactivity with any of the clinical rheumatological diagnoses. This study provides preliminary support for the importance of synovial fluid antibody testing for documenting exposure to B. burgdorferi but not for documenting exposure to Bartonella spp. IMPORTANCE: This study focuses on diagnostic testing for two common vector-borne diseases in an affected patient population. In it, we provide data showing that antibodies to B. burgdorferi, but not Bartonella spp., are more commonly found in synovial fluid than serum of patients with joint effusion. Since Lyme arthritis is a common-and sometimes difficult to diagnose-rheumatic disease, improving diagnostic capabilities is of utmost importance. While our findings are certainly not definitive for changes to practice, they do suggest that synovial fluid could be a useful sample for the clinical diagnosis of Lyme disease, and future prospective studies evaluating this claim are warranted.


Assuntos
Bartonella , Borrelia burgdorferi , Doença de Lyme , Doenças Reumáticas , Humanos , Líquido Sinovial , Estudos Transversais , Estudos Prospectivos , Doença de Lyme/diagnóstico , Imunoglobulina G , Anticorpos Antibacterianos , Imunoglobulina M
3.
Vet Med Sci ; 10(3): e1417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516829

RESUMO

BACKGROUND: Hippoboscid flies are bloodsucking arthropods that can transmit pathogenic microorganisms and are therefore potential vectors for pathogens such as Bartonella spp. These Gram-negative bacteria can cause mild-to-severe clinical signs in humans and animals; therefore, monitoring Bartonella spp. prevalence in louse fly populations appears to be a useful prerequisite for zoonotic risk assessment. METHODS: Using convenience sampling, we collected 103 adult louse flies from four ked species (Lipoptena cervi, n = 22; Lipoptena fortisetosa, n = 61; Melophagus ovinus, n = 12; Hippobosca equina, n = 8) and the pupae of M. ovinus (n = 10) in the federal state of Saxony, Germany. All the samples were screened by polymerase chain reaction (PCR) for Bartonella spp. DNA, targeting the citrate synthase gene (gltA). Subsequently, PCRs targeting five more genes (16S, ftsZ, nuoG, ribC and rpoB) were performed for representatives of revealed gltA genotypes, and all the PCR products were sequenced to identify the Bartonella (sub)species accurately. RESULTS AND CONCLUSIONS: The overall detection rates for Bartonella spp. were 100.0%, 59.1%, 24.6% and 75.0% in M. ovinus, L. cervi, L. fortisetosa and H. equina, respectively. All the identified bartonellae belong to the Bartonella schoenbuchensis complex. Our data support the proposed reclassification of the (sub)species status of this group, and thus we conclude that several genotypes of B. schoenbuchensis were detected, including Bartonella schoenbuchensis subsp. melophagi and Bartonella schoenbuchensis subsp. schoenbuchensis, both of which have previously validated zoonotic potential. The extensive PCR analysis revealed the necessity of multiple PCR approach for proper identification of the ruminant-associated bartonellae.


Assuntos
Bartonella , Dípteros , Ftirápteros , Humanos , Animais , Dípteros/genética , Dípteros/microbiologia , Ftirápteros/genética , DNA Bacteriano/genética , Bartonella/genética , Ruminantes/genética , DNA , Alemanha/epidemiologia , Reação em Cadeia da Polimerase/veterinária
4.
Comp Immunol Microbiol Infect Dis ; 107: 102153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460359

RESUMO

Climate change is causing many vectors of infectious diseases to expand their geographic distribution as well as the pathogens they transmit are also conditioned by temperature for their multiplication. Within this context, it is worth highlighting the significant role that fleas can play as vectors of important pathogenic bacteria. For this purpose, our efforts focused on detecting and identifying a total of 9 bacterial genera (Rickettsia sp.; Bartonella sp.; Yersinia sp.; Wolbachia sp., Mycobacterium sp., Leishmania sp., Borrelia sp., Francisella sp. and Coxiella sp.) within fleas isolated from domestic and peridomestic animals in the southwestern region of Spain (Andalusia). Over a 19-months period, we obtained flea samples from dogs, cats and hedgehogs. A total of 812 fleas was collected for this study. Five different species were morphologically identified, including C. felis, C. canis, S. cuniculi, P. irritans, and A. erinacei. Wolbachia sp. was detected in all five species identified in our study which a total prevalence of 86%. Within Rickettsia genus, two different species, R. felis and R. asembonensis were mainly identified in C. felis and A. erinacei, respectively. On the other hand, our results revealed a total of 131 fleas testing positive for the presence of Bartonella sp., representing a prevalence rate of 16% for this genus identifying two species B. henselae and B. clarridgeiae. Lastly, both Y. pestis and L. infantum were detected in DNA of P. irritans and C. felis, respectively isolated from dogs. With these data we update the list of bacterial zoonotic agents found in fleas in Spain, emphasizing the need to continue conducting future experimental studies to assess and confirm the potential vectorial role of certain synanthropic fleas.


Assuntos
Bartonella , Ctenocephalides , Felis , Infestações por Pulgas , Rickettsia felis , Rickettsia , Sifonápteros , Animais , Cães , Sifonápteros/microbiologia , Espanha/epidemiologia , Ctenocephalides/genética , Rickettsia felis/genética , Infestações por Pulgas/epidemiologia , Infestações por Pulgas/veterinária , Infestações por Pulgas/microbiologia , Bartonella/genética
5.
Parasitol Int ; 100: 102876, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438077

RESUMO

The chewing louse genus Eutrichophilus Mjöberg has 19 species only associated with porcupines (Rodentia: Erethizontidae). Of these species, E. cercolabes, E. cordiceps, E. emersoni, E. minor, E. moojeni, and E. paraguayensis have been recorded in Brazil. In the present study, we report E. cordiceps for the first time in the São Paulo State (Bauru Municipality) and for the second time in the Santa Catarina State (Lages Municipality), providing scanning electron images and light microscopy for the eggs, as well as the first molecular data (18S rRNA) for the genus. Additionally, Bartonella sp. was detected for the first time in this chewing lice species.


Assuntos
Bartonella , Doenças das Aves , Iscnóceros , Porcos-Espinhos , Doenças dos Roedores , Animais , Árvores , Bartonella/genética , Brasil , Roedores
6.
Trends Parasitol ; 40(4): 324-337, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458883

RESUMO

Ctenocephalides felis, the cat flea, is among the most prevalent and widely dispersed vectors worldwide. Unfortunately, research on C. felis and associated pathogens (Bartonella and Rickettsia spp.) lags behind that of other vectors and vector-borne pathogens. Therefore, we aimed to review fundamental aspects of C. felis as a vector (behavior, epidemiology, phylogenetics, immunology, and microbiome composition) with an emphasis on key techniques and research avenues employed in other vector species. Future laboratory C. felis experimental infections with Bartonella, Rickettsia, and Wolbachia species/strains should examine the vector-pathogen interface utilizing contemporary visualization, transcriptomic, and gene-editing techniques. Further environmental sampling will inform the range and prevalence of C. felis and associated pathogens, improving the accuracy of vector and pathogen modeling to improve infection/infestation risk assessment and diagnostic recommendations.


Assuntos
Bartonella , Doenças do Gato , Ctenocephalides , Felis , Infestações por Pulgas , Rickettsia felis , Rickettsia , Sifonápteros , Animais , Gatos , Ctenocephalides/microbiologia , Infestações por Pulgas/veterinária , Infestações por Pulgas/epidemiologia , Infestações por Pulgas/microbiologia , Biologia , Rickettsia felis/genética , Sifonápteros/microbiologia
7.
Virulence ; 15(1): 2322961, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38443331

RESUMO

Gram-negative Bartonella species are facultative intracellular bacteria that can survive in the harsh intracellular milieu of host cells. They have evolved strategies to evade detection and degradation by the host immune system, which ensures their proliferation in the host. Following infection, Bartonella alters the initial immunogenic surface-exposed proteins to evade immune recognition via antigen or phase variation. The diverse lipopolysaccharide structures of certain Bartonella species allow them to escape recognition by the host pattern recognition receptors. Additionally, the survival of mature erythrocytes and their resistance to lysosomal fusion further complicate the immune clearance of this species. Certain Bartonella species also evade immune attacks by producing biofilms and anti-inflammatory cytokines and decreasing endothelial cell apoptosis. Overall, these factors create a challenging landscape for the host immune system to rapidly and effectively eradicate the Bartonella species, thereby facilitating the persistence of Bartonella infections and creating a substantial obstacle for therapeutic interventions. This review focuses on the effects of three human-specific Bartonella species, particularly their mechanisms of host invasion and immune escape, to gain new perspectives in the development of effective diagnostic tools, prophylactic measures, and treatment options for Bartonella infections.


Assuntos
Infecções por Bartonella , Bartonella , Humanos , Evasão da Resposta Imune , Apoptose , Biofilmes , Proteínas de Membrana
8.
Comp Immunol Microbiol Infect Dis ; 107: 102150, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401221

RESUMO

The study aimed to determine the inter and intra-host Bartonella spp. genetic diversity in cats from Chile. 'Seventy-nine cats' blood DNA samples qPCR Bartonella spp. positive were subjected to T-A cloning of Bartonella spp. rpoB partial gene (825 bp), and sequencing by Sanger method. The sequences were submitted to phylogenetic and polymorphism analysis. Thirty-six (45.6%) samples were successfully cloned, generating 118 clones of which 109 showed 99.6%-100% identity with Bartonella henselae whereas 9 showed 99.8-100% identity with Bartonella koehlerae. Haplotype analysis yielded 29 different rpoB-B. henselae haplotypes, one (hap#2) overrepresented in 31 out of 33 cats, and 4 rpoB-B. koehlerae haplotypes, with hap#2 represented in all 3 B. koehlerae infected cats. More than one rpoB -B. henselae and B. koehlerae haplotypes were identified in individual cats, reporting by first time coinfection by different B. henselae/B. koehlerae rpoB variants in cats from Chile.


Assuntos
Infecções por Bartonella , Bartonella henselae , Bartonella , Doenças do Gato , Gatos , Animais , Haplótipos , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/veterinária , Chile/epidemiologia , Filogenia , Bartonella/genética , Bartonella henselae/genética , Variação Genética , Doenças do Gato/epidemiologia
9.
J Infect Public Health ; 17(4): 612-618, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417187

RESUMO

Bartonellosis is a vector-borne and zoonotic diseases in humans, especially in immunocompromised individuals. However, there is no complete data about the geographical distribution of different species of Bartonella, as well as the status of its reservoirs, vectors, and human cases in most parts of the world. In this study, published reports related to Bartonella species from WHO-EMRO region countries were searched in different databases until October 2023. The eighteens different species of Bartonella were reported in WHO-EMRO countries including Bartonella henselae, Bartonella quintana, Bartonella elizabethae, Bartonella bovis, Bartonella clarridgeiae, Bartonella vinsonii, Bartonella doshiae, Bartonella taylorii, Bartonella rochalimae, Bartonella tribocorum, Bartonella rattimassiliensis, candidatus Bartonella merieuxii, candidatus Bartonella dromedarii, Bartonella acomydis, Bartonella jaculi, Bartonella coopersplainsensis and Bartonella koehlerae. Also, only human cases of B. henselae and B. quintana infections were reported from WHO-EMRO countries. The infections of Bartonella are important in the WHO-EMRO region, but they have been neglected by clinicians and healthcare systems.


Assuntos
Bartonella , Humanos , Organização Mundial da Saúde , Região do Mediterrâneo/epidemiologia
10.
PLoS One ; 19(2): e0297280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38346057

RESUMO

Bartonellosis refers to disease caused by the Bartonella genus of bacteria. The breadth of disease manifestations associated with Bartonella is currently expanding and includes regional lymphadenopathy, rheumatic, ocular, and neurological disorders. The dearth of knowledge regarding diagnosis, treatment and pathogenesis of this disease can be partially attributed to the lack of a reliable small animal model for the disease. For this study, Bartonella henselae, the most common species associated with human disease, was injected into Swiss Webster (SW) mice. When the outcome indicated that productive infection did not occur, SCID/Beige (immune compromised) mice were inoculated. While SW mice may potentially harbor an acute infection, less than 10 days in length, the SCID/Beige model provided a sustained infection lasting up to 30-days. These data indicate that SCID/Beige mice can provide a model to study Bartonella infection, therapeutics, and vector dynamics in the future.


Assuntos
Infecções por Bartonella , Bartonella henselae , Bartonella , Doença da Arranhadura de Gato , Humanos , Camundongos , Animais , Doença da Arranhadura de Gato/diagnóstico , Camundongos SCID , Infecções por Bartonella/diagnóstico , Infecções por Bartonella/microbiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-38324875

RESUMO

Bartonella spp. are bacteria responsible for neglected diseases worldwide. Bartonella henselae is the species most associated with human infections. It is associated with a large spectrum of clinical manifestations and is potentially fatal. The identification of Bartonella spp. is considered a challenge in clinical routine. These bacteria are fastidious, and the time required to isolate them varies from one to six weeks. MALDI-TOF mass spectrometry has emerged as an application for research on Bartonella spp. , and has still been little explored. We investigated whether three different B. henselae strains with different growth times-14 and 28 days-could be correctly identified by MALDI-TOF mass spectra fingerprint comparison and matching. We found that the spectra from strains with different growth times do not match each other, leading to misidentification. We suggest creating database entries with multiple spectra from strains with different growth times to increase the chances of accurate identification of Bartonella spp. by MALD-TOF MS.


Assuntos
Bartonella henselae , Bartonella , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
12.
Parasitol Res ; 123(2): 144, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411931

RESUMO

In the family of fruit bats, Pteropodidae Gray, 1821, as in the third most diverse group of bats (Chiroptera), the bacterium of the genus Bartonella was detected in several species as well as in a few species of their insect ectoparasites in some tropical and sub-tropical regions of the Old World. The Egyptian fruit bat, Rousettus aegyptiacus (Geoffroy, 1810), is one of the most widespread fruit bats, occurring between South Africa, Senegal, and Pakistan. In this bat species, Candidatus Bartonella rousetti has been detected in three African populations in Nigeria, Kenya, and Zambia. This fruit bat, however, also occurs in the Palaearctic, an area isolating the species geographically and phylogenetically from the Afrotropical part of its distribution range. We screened the blood-sucking bat flies (family Nycteribiidae) from R. aegyptiacus for the presence of the Bartonella bacteria. A rich material of bat fly Eucampsipoda aegyptia (Macquart, 1850), a monoxenous ectoparasite of the Egyptian fruit bats, was collected at 26 localities in seven countries (Egypt, Iran, Jordan, Lebanon, Oman, United Arab Emirates, and Yemen) of the Middle East in 2007-2013. The DNA isolates from the bat flies were subjected to a three-marker (gltA, ssrA, and intergenic spacer region, ITS) multilocus sequence analysis. Based on the amplification of the fragment of ssrA gene by a real-time PCR, 65 E. aegyptia samples from 19 localities in all seven countries were positive for the bacteria. One to five Bartonella-positive individuals of E. aegyptia were collected per one individual of R. aegyptiacus. An analysis of the ITS and gltA genes indicated the presence of an uncultured Bartonella sp., belonging to the Cand. B. rousetti genogroup, identified from populations of the Egyptian fruit bat in Africa. These results support the hypothesis that Bartonella's diversity corresponds to its host's diversity (and phylogenetic structure). Specific lineages of pathogens are present in specific phylogenetic groups of bats.


Assuntos
Bartonella , Quirópteros , Humanos , Animais , Filogenia , Oriente Médio , Bartonella/genética , DNA Intergênico , Quênia
13.
Comp Immunol Microbiol Infect Dis ; 106: 102129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335834

RESUMO

Order Rodentia is the most speciose among mammals and the members of this order are known to host more than 60 zoonotic diseases and rodents are a potential health threat to humans. This study was designed to report the molecular prevalence and phylogenetic evaluation of various blood borne bacterial pathogens (Anaplasma ovis, Anaplasma phagocytophilum, Anaplasma marginale and Bartonella spp.) in the blood samples of four wild rodent species [Meriones rex (N = 27), Acomys dimidiatus (N = 18), Myomys yemeni (N = 6) and Rattus rattus (N = 3)] that were trapped during August till October 2020 from Al Makhwah governorate in Saudi Arabia. Results revealed by 9/54 (16.6%) rodents amplified Msp4 gene and 2/54 (3.7%) rodents amplified rpoB gene of Anaplasma ovis and Bartonella spp. respectively. Anaplasma phagocytophilum and Anaplasma marginale were not detected among enrolled rodent species. Meriones rex was the most highly infected rodent species. DNA sequencing and BLAST analysis confirmed the presence of Anaplasma ovis and the Bartonella koehlerae in rodent blood samples. Phylogenetic analysis of both pathogens showed that Saudi isolates were clustered together and were closely related to isolates that were reported from worldwide countries. Risk factor analysis revealed that prevalence of both bacterial pathogens was not restricted to a particular rodent species or a rodent sex (P > 0.05). In conclusion, we are reporting for the very first time that Saudi rodents are infected with Anaplasma ovis and rodents can be infected with Bartonella koehlerae. Similar studies at large scale are recommended in all those areas of Saudi Arabia that are unexplored for the incidence and prevalence of bacterial pathogens among the rodents that are living near human dwellings in order to prevent bacterial infections in local people as well as in livestock.


Assuntos
Anaplasma phagocytophilum , Anaplasma , Bartonella , Animais , Humanos , Arábia Saudita/epidemiologia , Prevalência , Filogenia , Gerbillinae
14.
Prev Vet Med ; 225: 106135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394962

RESUMO

The aim of this scoping review was to describe the zoonotic bacterial pathogens already reported and their frequency in different bat species. Six databases were searched, without restriction on the year or location where the studies were carried out. Based on the inclusion and exclusion criteria, 146 studies that were published between 1964 and 2020 (most after 2005) were selected. In these studies, 102 zoonotic bacterial genera were described in different samples of fourteen bat families in 55 countries, suggesting the possible role of bats as hosts for these pathogens. The pathogens mainly identified in bats were Bartonella spp., Leptospira spp. and Staphylococcus spp. In conclusion, the information provided by this scoping review expands the knowledge about zoonotic bacterial pathogens already identified in bats, which can guide epidemiological surveillance policies for these pathogens in different countries.


Assuntos
Infecções por Bartonella , Bartonella , Quirópteros , Humanos , Animais , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , Infecções por Bartonella/veterinária , Filogenia , Bactérias
15.
Parasit Vectors ; 17(1): 48, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303085

RESUMO

BACKGROUND: Cats are the primary reservoirs of the bacterium Bartonella henselae, the main cause of cat-scratch disease in humans. The main vector of the bacterium is the cat flea, Ctenocephalides felis. In southeastern Europe, data are lacking on the prevalence of B. henselae infection in cats, the strains of B. henselae involved and the risk factors associated with the infection. METHODS: Blood samples collected in ethylenediaminetetraacetic acid-containing tubes from 189 domestic cats (156 pet cats and 33 stray cats) from Zagreb, the capital city of Croatia, and 10 counties throughout Croatia were cultured for Bartonella spp. Following culture, bacterial isolates were genotyped at eight loci after using PCR to amplify 16S ribosomal RNA (rRNA) and the internal transcribed spacer region between the 16S and 23S rRNA sequences. Univariate and multivariate logistic regression were used to identify risk factors for B. henselae infection in cats. RESULTS: Bartonella spp. was detected in 31 cats (16.4%), and subsequent genotyping at the eight loci revealed B. henselae in all cases. Thirty complete multilocus sequence typing profiles were obtained, and the strains were identified as four sequence types that had been previously reported, namely ST5 (56.7%), ST6 (23.3%), ST1 (13.3%) and ST24 (3.3%), as well as a novel sequence type, ST33 (3.3%). The univariate analysis revealed a significantly higher risk of B. henselae infection in cats residing in coastal areas of Croatia (odds ratio [OR] 2.592, 95% confidence interval [CI] 1.150-5.838; P = 0.0191) and in cats with intestinal parasites (OR 3.207, 95% CI 1.088-9.457; P = 0.0279); a significantly lower risk was identified in cats aged > 1 year (OR 0.356, 95% CI 0.161-0.787; P = 0.0247) and in cats sampled between April and September (OR 0.325, 95% CI 0.147-0.715; P = 0.005). The multivariate analysis that controlled for age showed a positive association with the presence of intestinal parasites (OR 4.241, 95% CI 1.243-14.470; P = 0.0119) and coastal residence (OR 2.567, 95% CI 1.114-5.915; P = 0.0216) implying increased risk of infection, and a negative association with sampling between April and September (OR 0.379, 95% CI 0.169-0.848; P = 0.018) implying a decreased risk of infection. After controlling for the season, an increased risk of infection remained for the coastal region (OR 2.725, 95% CI 1.200-6.186; P = 0.012). CONCLUSIONS: Bartonella henselae is prevalent throughout Croatia and is a public health threat. Environmental and host factors can significantly affect the risk of infection, and these should be explored in more detail. The presence of intestinal parasites highlights the need to eliminate the flea vector, Ctenocephalides felis, as the most effective approach to control infections in cats and humans.


Assuntos
Infecções por Bartonella , Bartonella henselae , Bartonella , Doenças do Gato , Doença da Arranhadura de Gato , Ctenocephalides , Animais , Gatos , Humanos , Doença da Arranhadura de Gato/epidemiologia , Doença da Arranhadura de Gato/microbiologia , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/veterinária , Infecções por Bartonella/microbiologia , Croácia/epidemiologia , Bartonella henselae/genética , Fatores de Risco , Ctenocephalides/microbiologia , Doenças do Gato/epidemiologia
16.
mSystems ; 9(3): e0082923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38380907

RESUMO

A novel Bartonella-like symbiont (BLS) of Tyrophagus putrescentiae was characterized. BLS formed a separate cluster from the Bartonella clade together with an ant symbiont. BLS was present in mite bodies (103 16S DNA copies/mite) and feces but was absent in eggs. This indicated the presence of the BLS in mite guts. The BLS showed a reduction in genome size (1.6 Mb) and indicates gene loss compared to Bartonella apis. The BLS can be interacted with its host by using host metabolic pathways (e.g., the histidine and arginine metabolic pathways) as well as by providing its own metabolic pathways (pantothenate and lipoic acid) to the host, suggesting the existence of a mutualistic association. Our experimental data further confirmed these potential mutualistic nutritional associations, as cultures of T. putrescentiae with low BLS abundance showed the strongest response after the addition of vitamins. Despite developing an arguably tight dependency on its host, the BLS has probably retained flagellar mobility, as evidenced by the 32 proteins enriched in KEGG pathways associated with flagellar assembly or chemotaxis (e.g., fliC, flgE, and flgK, as highly expressed genes). Some of these proteins probably also facilitate adhesion to host gut cells. The microcin C transporter was identified in the BLS, suggesting that microcin C may be used in competition with other gut bacteria. The 16S DNA sequence comparison indicated a mite clade of BLSs with a broad host range, including house dust and stored-product mites. Our phylogenomic analyses identified a unique lineage of arachnid specific BLSs in mites and scorpions.IMPORTANCEA Bartonella-like symbiont was found in an astigmatid mite of allergenic importance. We assembled the genome of the bacterium from metagenomes of different stored-product mite (T. putrescentiae) cultures. The bacterium provides pantothenate and lipoic acid to the mite host. The vitamin supply explains the changes in the relative abundance of BLSs in T. putrescentiae as the microbiome response to nutritional or pesticide stress, as observed previously. The phylogenomic analyses of available 16S DNA sequences originating from mite, scorpion, and insect samples identified a unique lineage of arachnid specific forming large Bartonella clade. BLSs associated with mites and a scorpion. The Bartonella clade included the previously described Ca. Tokpelaia symbionts of ants.


Assuntos
Acaridae , Bartonella , Ácaros , Ácido Tióctico , Animais , Acaridae/microbiologia , Simbiose , Ácaros/genética , Bactérias , Alérgenos , Bartonella/genética
17.
Eur J Clin Microbiol Infect Dis ; 43(4): 649-657, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38270806

RESUMO

PURPOSE: Fever of intermediate duration (FID) is defined as a fever in the community without a specific origin or focus, with a duration between 7 and 28 days. FID is often caused by pathogens associated with animal contact or their arthropods parasites, such as ticks, fleas, or lice. The purpose of this work is to design a collection of molecular tools to promptly and accurately detect common bacterial pathogens causing FID, including bacteria belonging to genera Rickettsia, Bartonella, Anaplasma, and Ehrlichia, as well as Coxiella burnetii. METHODS: Reference DNA sequences from a collection of Rickettsia, Bartonella, Anaplasma, and Ehrlichia species were used to design genus-specific primers and FRET probes targeted to conserved genomic regions. For C. burnetii, primers previously described were used, in combination with a newly designed specific probe. Real-time PCR assays were optimized using reference bacterial genomic DNA in a background of human genomic DNA. RESULTS: The four real-time PCR assays can detect as few as ten copies of target DNA from those five genera of FDI-causing bacteria in a background of 300 ng of human genomic DNA, mimicking the low microbial load generally found in patient's blood. CONCLUSION: These assays constitute a fast and convenient "toolbox" that can be easily implemented in diagnostic laboratories to provide timely and accurate detection of bacterial pathogens that are typical etiological causes of febrile syndromes such as FID in humans.


Assuntos
Bartonella , Coxiella burnetii , Rickettsia , Animais , Humanos , Rickettsia/genética , Bartonella/genética , Ehrlichia/genética , Coxiella burnetii/genética , Anaplasma/genética , DNA
19.
Vector Borne Zoonotic Dis ; 24(1): 46-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193886

RESUMO

Background: Rattus norvegicus can carry and transmit various zoonotic pathogens. Some studies were conducted to investigate a few zoonotic pathogens in Guangzhou, China, but no coinfections were investigated or specifically mentioned. Studies on the infections and the influencing factors of various zoonotic pathogens in R. norvegicus along the Zengjiang River in Guangzhou have not been carried out. Materials and Methods: In this study, R. norvegicus was captured in November 2020 and September 2021 along the Zengjiang River, and was tested for Bartonella spp., Leptospira spp., Orientia tsutsugamushi, Borrelia burgdorferi, Hantavirus (HV), Ehrlichia spp., and severe fever with thrombocytopenia syndrome virus (SFTSV) by the RT-PCR. Logistic regression analysis was used to determine the impact of habitat and demographic factors on the infections and coinfections of the surveyed pathogens. Results: In 119 R. norvegicus, the detection rates of Bartonella spp., Leptospira spp., O. tsutsugamushi, B. burgdorferi, and HV were 46.2%, 31.9%, 5%, 0.8%, and 18.5%, respectively. Ehrlichia spp. and SFTSV were negative. The triple coinfection rate of Bartonella spp., Leptospira spp., and HV was 11.8%. In addition, the coinfection of Bartonella spp., Leptospira spp., and B. burgdorferi was 0.8%. Dual coinfection of Bartonella spp. and Leptospira spp., Leptospira spp. and HV, Bartonella spp. and O. tsutsugamushi, Leptospira spp. and O. tsutsugamushi, and HV and O. tsutsugamushi was 9.2%, 3.4%, 1.7%, 1.7%, and 0.8%, respectively. Infections of these pathogens in R. norvegicus were found in habitats of banana plantation, grassland, and bush. Weight affected the infection of Bartonella spp., Leptospira spp., or HV in R. norvegicus. Conclusions: R. norvegicus along the Zengjiang River not only carried various potentially zoonotic pathogens but also had a variety of coinfections. Surveillance of the density and pathogens in R. norvegicus should be strengthened to reduce the incidence of relevant zoonotic diseases.


Assuntos
Bartonella , Coinfecção , Leptospira , Orthohantavírus , Doenças dos Roedores , Tifo por Ácaros , Animais , Ratos , Coinfecção/epidemiologia , Coinfecção/veterinária , Rios , China/epidemiologia , Zoonoses , Bartonella/genética , Ehrlichia , Tifo por Ácaros/veterinária
20.
Acta Trop ; 251: 107129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266887

RESUMO

Although Bartonella spp. have been worldwide described in rodents and bats, few studies have reported these agents in marsupials. The present work aimed to investigate the occurrence and genetic diversity of Bartonella in small mammals (rodents, marsupials, and bats) and associated ectoparasites in two ecoregions (Amazonia and Cerrado biomes) in midwestern Brazil. For this purpose, DNA samples from 378 specimens of small mammals (128 rodents, 111 marsupials, and 139 bats) and 41 fleas (Siphonaptera) were screened for the Bartonella genus employing a quantitative real-time PCR assay (qPCR) based on the nuoG (nicotinamide adenine dinucleotide dehydrogenase gamma subunit) gene. Then, positive samples in qPCR were submitted to conventional PCR (cPCR) assays targeting the gltA, ftsZ, and rpoB genes. One (0.78 %) rodent, 23 (16.54 %) bats, and 3 (7.31 %) fleas showed positive results in the qPCR for Bartonella sp. After cPCR amplification and sequencing, 13 partial Bartonella DNA sequences of the following genes were obtained only from bats´ blood samples: 9 gltA (citrate synthase), 3 ftsZ (cell division protein), and 1 rpoB (RNA polymerase beta subunit). The maximum likelihood inference based on the gltA gene positioned the obtained sequences in three different clades, closely related to Bartonella genotypes previously detected in other bat species and bat flies sampled in Brazil and other countries from Latin America. Similarly, the ftsZ sequences clustered in two different clades with sequences described in bats from Brazil, other countries from Latin America, and Georgia (eastern Europe). Finally, the Bartonella rpoB from a specimen of Lophostoma silvicolum clustered with a Bartonella sp. sequence obtained from a Noctilio albiventris (KP715475) from French Guiana. The present study provided valuable insights into the diversity of Bartonella genotypes infecting bats from two ecoregions (Amazonia and Cerrado) in midwestern Brazil and emphasized that further studies should be conducted regarding the description and evaluation of different lineages of Bartonella in wild small mammals and their ectoparasites in different Brazilian biomes.


Assuntos
Infecções por Bartonella , Bartonella , Quirópteros , Infestações por Pulgas , Marsupiais , Sifonápteros , Animais , Bartonella/genética , Brasil/epidemiologia , Mamíferos/parasitologia , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/veterinária , Roedores , Ecossistema , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...